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Abstract. Capacity improvement involves the reduction of the size of the feasible region of an 
optimization problem without 'cutting-off' the optimal solution point(s). Capacity improvement 
can be used in a branch-and-bound procedure to produce tighter relaxations to subproblems in the 
enumeration tree. Previous capacity improvement work has concentrated on tightening the simple 
lower and upper bounds on variables. In this paper, the capacity improvement procedure is generalized 
to apply to all constraints that form the feasible region. For the minimization of a separable concave 
function over a bounded polytope, the method of calculating the capacity improvement parameters 
is very straightforward. Computational results for fixed-charge and quadratic concave minimization 
problems demonstrate the effectiveness of this procedure. 
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1. Introduction 

Capacity improvement can be classified as a 'domain reduction' technique. Domain 
reduction involves the 'shrinking' of the feasible region of  an optimization prob- 
lem while, at the same time, ensuring that the tighter region thus produced still 
contains the optimal solution point(s) to the original problem. Techniques such 
as variable 'pegging' [14] for fixed-charge problems or Tuy [26] cuts for general 
concave minimization problems can be classified as domain reduction techniques. 
A distinguishing feature of capacity improvement, however, is that it does not 
add additional constraints to the problem. Instead, it tightens the feasible region 
by systematically altering the right-hand-side coefficients of the constraints of the 
problem. In this way, tighter relaxations to the original problem can be produced 
without increasing the complexity of these relaxations. Additional domain reduc- 
tion techniques are discussed in [2, 4, 5, 6, 10, 11, 15, 16, 18, 23, 24, 25]. 

To illustrate the effect of  the generalized capacity improvement procedure pre- 
sented in this paper, consider problem P ,  the minimization of a separable concave 
function over a bounded polytope. Problem P is specified as 

P r o b l e m P "  min~b(z) s.t. z E X = G f q H ,  

where z_ = ( . . . ,  z j , . . . ) ' r  E R n is the decision variable vector; G = {_z" A z = __b} 
is a polytope with A E R ~•  and_b = ( . . . ,  hi , . . . )T E Rm; H = {z_: I < z < u_u_} 
is a hyper-rectangle with / = ( . . .  , l j , . . . ) T  E R n and u_u_ = ( . . .  , u j , . . . ) ' r  E Rn; 
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and r = ~r~=l(~j(xj) i s  the objective function with each Cj(xj) a concave 
function over lj < xj < uj. Let x* = ( . . . ,x~, . . . )T E R '~ denote an optimal 
solution vector of problem P. Also, throughout this paper, for any problem., let 
v[e] denote the optimal objective function value o f . ,  let lb[e] be a lower bound to 
v[.], and let ub[.] be an up.per bound to v[.]. Thus, v[P] = r 

Now consider the set X c_ R '~. If x_.* E X, then X is termed a 'valid' region 
for problem P. If, in addition to being valid, we have X C X, then .~ is called 
an 'improved' region for problem P. Domain reduction techniques, such as capac- 
ity improvement, produce improved feasible regions. Previous work on capacity 
improvement has focused on generating ~ improved region .~ by producing 
improved lower and upper variable bounds, _/and _~. This is the approach taken in 
[ 15, 16, 18, 23, 25]. In this paper, we extend the ability of the capacity improvement 
procedure to generate an improved region X by producing improved bounds/_ and 
_~ as well as an improved right-hand-side coefficient vector _b. This extension to the 
capacity improvement procedure is referred to as 'generalized capacity improve- 
ment'. Generalized capacity improvement was first explored in [17]. It has also 
been used successfully in [24]. 

Most methods for solving problem P involve extreme point ranking, cutting 
plane, or branch-and-bound techniques. These methods are surveyed in [9, 12, 13, 
19, 20, 21, 22]. In the branch-and-bound method, the rectangle H is partitioned 
into successively smaller rectangles producing a series of subproblems of problem 
P. Let Q be a generic subproblem of P and let XQ denote the feasible region of 
Q. Domain reduction techniques, such as generalized capacity improvement, can 
be applied to each subproblem Q to produce an improved region XQ. Note that 
since XQ C XQ, a relaxation based on )~Q will, in general, produce a lower bound 
to v[Q] that is tighter than one based on XQ,. This tighter lower bound to v[Q], 
in turn, facilitates the fathoming of subproblem Q. Branch-and-bound algorithms 
that incorporate domain reduction have been aptly labeled by Ryoo and Sahinidis 
[23] as 'branch-and-reduce' methods. 

This paper is organized as follows. Section 2 outlines a branch-and-bound algo- 
rithm that uses generalized capacity improvement for domain reduction of the sub- 
problems. Section 3 describes a straightforward method of computing the param- 
eters used in the generalized capacity improvement procedure. Section 4 reports 
on the computational performance of this technique for a class of fixed-charge and 
quadratic concave minimization problems. Finally, Section 5 summarizes the paper 
and discusses future work in this area. 

2. Solution Method 

This section is divided into two parts. The first part summarizes the tradition- 
al branch-and-bound method for solving problem P using rectangular partition- 
ing (see, for example, [22]). This part also introduces notation. The second part 
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describes how generalized capacity improvement can be incorporated within the 
traditional branch-and-bound algorithm. 

2.1. BRANCH-AND-BOUND PROCEDURE 

Rather than solving P directly, the branch-and-bound procedure partitions the 
rectangle H into smaller rectangles. This creates a series of 'subproblems' (i.e., 
'descendants') of problem P. Let problem Q denote the subproblem of P currently 
under consideration. Specifically, 

Problem Q : min r s.t. x E X Q  = GQ fq HQ, 

where GQ = {x_ : Ax_ = b Q} and HQ = {_x : /Q < x < U_Q} with bQ ---- 
(... ,bQi,...)T E Rm, l_Q = (... ,IQj,...)T E Rn andU_Q = (. . .  ,UQj,...)T E R n 
such that GQ C_ G and HQ C_ H. In the traditional branch-and-bound procedure 
using rectangular partitioning, _bQ ---~ b. Later, when capacity improvement is dis- 
cussed, _bQ will be distinct from _b. 

Problem Q (and its descendants) can be eliminated from further consideration 
if the following fathoming criterion, denoted criterion (F), is satisfied: 

(F) Ib[Q] >_ ub[P] 

Typically, the value of ub[P] is taken as the objective function value of the current 
'incumbent' solution of P (i.e., best feasible solution to P found so far); and the 
value of lb[Q] is obtained by solving a 'relaxation' of Q. 

In general, a relaxation of Q can be any problem such that the following two 
properties, denoted (R1) and (R2), are satisfied [7]: 

(R1) The feasible region of the relaxation contains or equals XQ; 

(R2) The objective function value of the relaxation at each point x E XQ is less 
than or equal to r 

For our purposes, it is important to distinguish between properties (R1) and (R2). 
Therefore, we define a 'feasibility relaxation' of Q as any problem whose feasible 
region satisfies property (R1) but whose objective function equals r for all 
x E XQ. Similarly, we define an 'objective value relaxation' of Q as any problem 
whose objective function satisfies property (R2) but whose feasible region equals 
XQ. 

Let Q be an objective value relaxation of Q. Specifically, 

Problem Q : rain Co(X) s.t. x_. E XQ = G o N HQ, 

whereeQ(x) = '~ - ~j=l  eQj (x j) is the convex (in our case, affine) lower envelope 
of r on HQ. Because XQ is a polytope and Co(X) is affine, problem Q is a 
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linear program which can be solved very efficiently. Since Q is a relaxation of Q, 
we define v[Q] as the 'relaxation lower bound' to v[Q]. 

If the fathoming criterion (F) is satisfied using the relaxation lower bound, then 
no further evaluation of problem Q is required and another subproblem of P can 
be selected and evaluated as the current subproblem. On the other hand, if criterion 
(F) is not satisfied, then one of the following two 'branching' actions, denoted (B1) 
and (B2), must be taken by the branch-and-bound procedure: 

(B1) 'Persist' at the current subproblem by evaluating a tighter relaxation of Q; 

(B2) 'Separate' the current subproblem by partitioning the rectangle HQ into 
two smaller rectangles thereby replacing Q with two new subproblems of 
P. 

Following action (B1), the branch-and-bound procedure will again attempt to fath- 
om problem Q using a tighter value of/b[Q] whereas following action (B2), a new 
subproblem will be selected and the branch-and-bound procedure will attempt to 
fathom the new subproblem. In either case, the branch-and-bound procedure will 
continue until all subproblems have been fathomed using criterion (F). Once all 
the subproblems of P have been fathomed, the branch-and-bound procedure ter- 
minates and the current incumbent solution to P is identified as an optimal solution 
toP .  

2.2. GENERALIZED CAPACITY IMPROVEMENT 

Generalized capacity improvement is one method of taking action (B1) (i.e., 'per- 
sisting' at the current subproblem, Q). In order to explain the concept, we define 
another problem, denoted Q*, whose feasible region, denoted X~, is the (possibly 
empty) subset of X o in which the value of r less than or equal to ub[P] (the 
current upper bound to v [P]). Specifically, 

Problem Q* : min r s.t. _x E X~ = GQ M HQ M {x__: r _< ub[P]}. 

Thakur [25] refers to problem Q* as a 'contraction' of problem Q. Note that if 
ub[P] > v[Q], then v[Q*] = v[Q]. On the other hand, if ub[P] < v[Q], then Q* is 
infeasible so X~ is empty and v[Q*] = +c~. 

In addition, let Qr for r ---- 0, 1 ,2 , . . . ,  be a family of successively tighter 
feasibility relaxations of Q*. Specifically, 

ProblemQr: mine(x)  s.t. x E X ~ = G  0 N H ~ ,  

where G 0 = {_x : Ax = b__~} and H~ = {x : _/~ < x < uS} with ~ = 
(... b r ..)T R m 1 r . . . .  )T R nand_~ r . . . ) T E R  n , , _ q  e 

such that for each r we have X~ _3 X~ +1 _3 X~. For r = O, we set G~ = GQ and 
H~ = HQ so that Z ~  = XQ and problem Q0 is the same as problem Q. Note that 
ifub[P] > v[Q], then for each r we have v[Q r] = v[Q r+l] = v[Q*] = v[Q]. 
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Next, we define problem Q~ to be an objective value relaxation of problem Qr. 
Specifically, 

Problem Q ~ : minr s.t. x E X ~ = G  0 N H ~ ,  

where r  (z__) = n -~  Ej= 1 q3oj (xj) is the convex (in our case, affine) lower envelope of 

r on H~. Problem ~ r  is a linear program which can be solved very efficiently. 

Note that, because ~ r  is a relaxation of Qr,  we have v[Q ~] < v[Q~]. Furthermore, 
ifub[P] > v[Q], then for each r, wehave v[Q r] = v[Q],sov[Q'] is a lower bound 
to v[Q]. On the other hand, if ub[p] < v[Q], then ub[P] is itself a lower bound to 
v[Q]. This means that either v[Q ~] or ub[P] (or possibly both) is a lower bound to 
v[Q]. 

Therefore, for each r, we let CI~ denote the 'capacity improvement lower 
bound' to v [Q], where CI~ is defined as 

CI~ = min {ub[P], v[Q~]}. (1) 

The generalized capacity improvement procedure produces a sequence of non- 
decreasing lower bounds each of which is as least as tight as the relaxation lower 
bound v [Q]. If, for any given r, criterion (F) is satisfied using the capacity improve- 
ment lower bound, then problem Q can be fathomed. Otherwise, either actions (B1) 
or (B2) must be taken. If action (B1) is selected, then the branch-and-bound pro- 
cedure will attempt to produce a tighter lower bound to v[Q] by solving problem 

~ r + l  and computing CI[~ +1. On the other hand, if action (B2) is chosen, then 
rectangle H~ will be partitioned into two smaller rectangles. 

The next section describes how CI~ is calculated by specifying the parameters 

in problem Q . 

3. Parameter Determination 

Throughout this section we assume that we are focusing on the rth capacity 
improvement iteration of subproblem Q .  Therefore, we omit the subscript 'Q' 
and the superscript ' r '  throughout this section. Also, when we are referring to the 
(r + 1 )-st capacity improvement iteration, we use the superscript' 1' rather than the 
superscript ' r  + 1' throughout this section. Thus, for instance, in the rth iteration, 
(1) is given as 

(5/1 = min {ub[P], v[Q]} 

and, in the (r + 1)-st iteration, (1) is specified as 

CI 1 = min {ub[P],v[Q1]}. 

(2) 

We assume that, in the rth iteration, the solution to the linear program Q is available. 
The solution to problem Q (in the rth iteration) is used to determine the 'improved' 

(3) 
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parameter vectors, __b 1 = ( . . . , b~ , . . . )T  E R m, /1 = ( . . . , l j , . . . ) T  E R n and 

_u 1 = ( . . . ,  u J . . . ) T  E R n (in the (r + 1 )-st iteration). Once the improved parameter 

vectors have been determined, problem Q 1 can be solved and the value of v [Q 1] 
can be determined. This value, in turn, is used to calculate CI 1 using (3). Thus, 
using this 'boot-strap' method, the capacity improvement lower bound can be 
computed for any iteration number, r. 

This section is divided into four subsections. The first two subsections describe 
the method for computing the improved right-hand-side vector bl; and, for com- 
pleteness, the last two subsections review the method for computing the improved 
lower and upper bound vectors,/1 and u__ 1. 

3.1. GREATER-THAN-OR-EQUAL-TO CONSTRAINT 

Let _a i E R n be a row vector denoting the ith row of constraint matrix A. Then, the 
ith constraint of the polyhedral constraint set G of problem Q is given by aix = hi. 
Suppose that this equality constraint was formed by introducing a surplus variable 
to a greater-than-or-equal-to constraint. Let k(i) denote the index of the surplus 
variable for the ith constraint and let _.Ca(i) E R n be a unit row vector (i.e., a vector 
of zeros except for a 1 in the k(i)th position). Then, the ith constraint of problem 

can also be expressed as (ai + _ek(i))x__ >_ hi. 
Now consider the effect of adding the less-than-or-equal-to constraint 

dix </9 (4) 

to problem Q where _d i = a i -t-_ek(i) and 0 is a scalar parameter. Note that constraint 

(4) is identical to the ith constraint of problem Q except for the right-hand-side 
coefficient and the direction of the inequality. Let problem Q augmented with 
constraint (4) be denoted by Q [ _dix__ < 0 and let v [Q [ di_x < 0] denote the optimal 
objective function value of this augmented problem. Note that v [Q [ _dix__ </9] is 
a piecewise-linear, convex, nonincreasing function of/9 and that constraint (4) is 
binding in the optimal solution to the augmented problem only if/9 < bi + ~k(i) 
where Xa(i) is the optimal value of decision variable xk(i) in problem Q. 

In addition, let ai  denote the rate of increase in v [Q [ _dix__ </9] for an incremental 
decrease in/9 below bi + ~k(i). As shown in the Appendix, ai  can be computed 
directly from the solution to problem Q. By construction, ai >_ 0. 

Next, let (9(/9) denote the line given by 

(9(0) = v[Q] + ai(bi + -Zk(i)) -- aiO. (5) 

Observe that 0(0) is a tangent line to the function v[Q [ -dix-- < 0]. It has slope 
-oq  and passes through the point (hi + ~k(i), v[Q]). If oq is strictly greater than 
zero, then we can solve explicitly for the value of 0 such that (9(0) equals the 
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upper bound, ub[P]. Letting bi denote the value of 0 such that 0(0) = ub[P], we 
obtain 

ub[P] - v[Q] (6) 
bi = bi + "Zk(i) --  a+ 

We now specify b~, the improved right-hand-side coefficient for the (greater-than- 
or-equal-to) constraint i, as 

b~ = ( bibi otherwiseif ai > 0 and bi > bi (7) 

3.2. LESS-THAN-OR-EQUAL-TO CONSTRAINT 

Now suppose that the ith constraint of Q was formed by adding a slack variable to a 
less-than-or-equal-to constraint. A procedure analogous to that given in Section 3.1 
can be performed to determine the improved right-hand-side coefficient, b~. Let 
k(i) denote the index of the slack variable for the ith constraint. Then, the ith 
constraint of problem Q can be expressed as (_a i - ek(i))z_ _< bi. 

We now form the augmented problem by adding the greater-than-or-equal-to 
constraint 

~+_x _> 0 (8) 

to problem Q where -di = -ai - -ek(i) and 0 is a scalar parameter. Let problem 

augmented with constraint (8) be denoted by Q [ _dix_ _> 0 and let v[Q [ ~ix_ _> 0] 
denote the optimal objective function value of this augmented problem. For this 
case, note that v[Q [ _di_x _> 0] is a piecewise-linear, convex, nondecreasing function 
of 0 and that constraint (8) is binding only if 0 _> b+ - ~k(i). 

Let/3/denote the rate of increase in v[Q [ _di_x _> 0] for an incremental increase 
in 0 above bi - ~k(i). By construction,/3i _> 0. Now let 0(0) denote the tangent 
line given by 

0(0) = v[O] - ]3i(bi - Zk(i)) + fliO. (9) 

If/3i > O, then we can solve explicitly for the value of 0 such that 0(0) = ub[P]. 
Letting bi denote this value, we obtain 

bi = bi - Zk(i) + ub[P] - v[Q] (10) 

Then, the value of b+, the improved right-hand-side coefficient for the (less-than- 
or-equal-to) constraint i, is given by 

b~ = { bi if/3/ > 0 and bi < bi 
bi otherwise (11) 
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3.3. LOWER BOUND 

Let k be the index of one of the decision variables in problem Q, let _e k E R n be 
a unit vector, and let 0 be a scalar. Consider the augmented problem formed by 
adding the constraint 

_ek_z _< 0 (12) 

to problem Q. Let 7k denote the rate of increase in v[Q [ _ek_z _< 0] for an incremental 
decrease in 0 below ~k. By construction, 7k > 0. Let 0(0) denote the tangent line 
given by 

0(0) = v[Q] + 7k~k -- 7k0. (13) 

Letting [k denote the value of 0 such that 0(0) = ub[P]  for "Tk > 0, we obtain 

lk = -2k - ub[P]  - v[Q] (14) 
7k 

and the value of l~, the improved lower bound for variable xk, is given by 

ll = { lklk otherwiseif 7k > 0 and k > Ik (15) 

3.4. UPPER BOUND 

Now consider the augmented problem formed by adding the greater-than-or-equal- 
to constraint 

_.ek_z > 0 (16) 

to problem Q and let 6k denote the rate of increase in v[Q [ _.ekz_. > 0] for an 
incremental increase in 0 above ~k. By construction, 6k > 0.  Let 0(0) denote the 
tangent line given by 

0(0) = v[Q] - 6 k ~ k  + 6leo (17) 

Letting 72k denote the value of 0 such that 0(0) = ub[P]  for 6k > 0, we obtain 

ub[P]  - v[Q] 
~2k = ~k + (18) 6k 

and the value of u~, the improved upper bound for variable xk, is given by 

u l =  ~2k i f 6 k > 0 a n d ~ 2 k < u k  
(19) 

( uk otherwise 
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The next section examines the computational effectiveness of the generalized 
capacity improvement procedure. 

4. Computational Performance 

The solution method described in Sections 2 and 3 was applied to two types of 
nonconvex minimization problems. First, Gray's [8] fixed-charge test problems 
were solved. These test problems are referred to as problems FIXED-1A through 
FIXED-4C. Second, these same test problems were solved using a separable con- 
cave quadratic objective function in place of the fixed-charge objective function. 
The quadratic functions were generated using coefficients that were randomly cho- 
sen from a uniform distribution. The coefficient for the squared term in the objective 
function was forced to be negative to ensure that the functions were concave. The 
quadratic test problems are referred to as problems QUAD-1A through QUAD-4C. 
The characteristics of the 12 fixed-charage and the 12 quadratic test problems are 
summarized in Table I. 

TABLE I. Characteristics of test problems 

Type of Number of 
Problem objective Number of decision 

name function constraints variables 

FIXED- 1A, 1B, 1C Fixed-charge 10 9 
FIXED-2A,2B,2C Fixed-charge 18 15 
FIXED-3A,3B,3C Fixed-charge 30 19 
FIXED-4A,4B,4C Fixed-charge 28 30 
QUAD-1A,1B,1C Concave quadratic 10 9 
QUAD-2A,2B,2C Concave quadratic 18 15 
QUAD-3A,3B,3C Concave quadratic 30 19 
QUAD-4A,4B,4C Concave quadratic 28 30 

Each of the 24 test problems was solved four times: first, using the traditional 
branch-and-bound approach without capacity improvement (see Section 2.1); sec- 
ond, using capacity improvement only for the lower and upper bound vectors (_/~ 
and ~_~); third, using capacity improvement only for the right-hand-side coeffi- 
cient vector (_.b~); and fourth, using capacity improvement for the upper and lower 
bounds as well as the right-hand-side coefficients (_/~, _~, and b_~). The solution 
methods were programmed in Fortran using the Lindo callable library to solve the 
objective value relaxations (~ r )  for the subproblems. The problems were solved 
on a Micro-Source International microcomputer (comparable to an IBM-AT). For 
each problem and each solution method, the number of subproblems evaluated in 
the branch-and-bound enumeration tree and the total CPU time (in seconds) were 
recorded. 
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The results are shown in Tables II through V. Tables II and ]1I give the num- 
ber of subproblems solved for the fixed-charge and the concave quadratic test 
problems, respectively. Here, we see that the capacity improvement procedure had 
a pronounced effect. Compared to the traditional branch-and-bound method, the 
generalized capacity improvement procedure reduced the number of subproblems 
evaluated by over 50% for the fixed-charge problems, and by over 80% for the 
concave quadratic problems. In fact, when capacity improvement was applied to 
the quadratic problems, two-thirds of the test problems required only a single 
subproblem, indicating that these problems were solved at the 'root node' in the 
branch-and-bound enumeration tree. Tables II and III also show that a substantial 
proportion of the benefit of capacity improvement was due to the improvements of 
the lower and upper bounds rather than due to improvements in the right-hand-side 
coefficients. 

TABLE II. Subproblems evaluated: Fixed-charge test problems 

Branch-and-bound solution method 
Problem C.I. for C.I. for C.I. for 

n a m e  Traditional ~ ,  u S b~ ~ ,  _~, b~ 

FIXED- 1A 65 31 49 29 
FIXED- 1B 47 25 29 13 
FIXED- 1C 129 87 95 47 
FIXED-2A 299 173 297 141 
FIXED-2B 243 179 203 121 
FIXED-2C 2479 1447 2213 1303 
FIXED-3A 1113 673 955 645 
FIXED-3B 887 401 801 389 
FIXED-3C 627 293 591 259 
FIXED-4A 2089 1061 1747 807 
FIXED-4B 1169 685 2135 1325 
FIXED-4C 4471 2303 2561 1251 

Average % 0.00% +44.04% + 10.27% +51.56% 
improvement 

The achievements of the generalized capacity improvement to reduce the num- 
ber of subproblems evaluated is tempered somewhat by the results relating to 
CPU time. This information is shown in Tables IV and V for the fixed-charge 
and quadratic test problems, respectively. We see that, on average, the generalized 
capacity improvement reduced the CPU time by about 2% for the fixed-charge 
problems and by over 17% for the quadratic problems. However, an even greater 
benefit was achieved when the capacity improvement was applied only to the lower 
and upper bounds. Here, the capacity improvement procedure reduced the CPU 
time by over 20% for the fixed-charge problems and by over 40% for the quadrat- 
ic problems. In contrast, when the capacity improvement was used for only the 
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TABLE Ill. Subproblems evaluated: Concave quadratic test problems 

Branch-and-bound solution method 
Problem C.I. for C.I. for C.I. for 

name Traditional ~ ,  ~ b~ /_~, _~,  _b~ 

QUAD-1A 5 1 5 1 
QUAD-1B 13 5 13 5 
QUAD- 1C 7 1 7 1 
QUAD-2A 21 5 15 5 
QUAD-2B 15 1 15 1 
QUAD-2C 7 1 7 1 
QUAD-3A 23 3 19 3 
QUAD-3B 9 1 9 1 
QUAD-3C 33 1 33 1 
QUAD-4A 5 1 5 1 
QUAD-4B 27 5 27 5 
QUAD-4C 5 1 3 1 

Average % 0.00% .1 .83 .07% .1 .7 .16% -I-83.07% 
improvement 

TABLE IV. CPU Time: Fixed-charge test problems 

Branch-and-bound solution method 
Problem C.I. for C.I. for C.I. for 

name Traditional ~ ,  _u S b~ ~ ,  _~, b~ 

FIXED- 1A 20.76 13.07 19.83 14.17 
FIXED-1B 16.42 12.75 12.58 8.35 
FIXED- 1C 43.61 39.60 43.28 30.37 
FIXED-2A 162.14 125.39 218.80 146.98 
FIXED-2B 130.94 115.29 154.46 117.48 
FIXED-2C 1388.18 1110.53 1749.98 1381.71 
FIXED-3A 785.44 755.50 916.98 958.89 
FIXED-3B 629.83 466.98 768.29 592.87 
FIXED-3C 415.45 307.42 544.80 387.83 
FIXED-4A 2270.73 1512.76 3371.49 1984.02 
FIXED-4B 1259.66 992.12 4128.75 3072.53 
FIXED-4C 4933.24 3603.12 5348.26 3292.89 

Average % 0.00% -I-21.70% -33.74% .1.1.98% 
improvement 
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TABLE V. CPU time: Concave quadratic test problems 
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Branch-and-bound solution method 
Problem C.I. for C.I. for C.I. for 

name Traditional ~ ,  _u~ b~ _/~, .~ ,  b~ 

QUAD-1A 1.82 1.26 2.26 1.54 
QUAD- 1B 4.23 3.52 5.05 4.45 
QUAD- IC 2.03 0.77 2.42 0.88 
QUAD-2A 11.04 7.47 11.10 10.87 
QUAD-2B 7.09 2.14 9.83 2.91 
QUAD-2C 3.73 1.70 4.95 2.09 
QUAD-3A 15.16 7.25 17.57 10.72 
QUAD-3B 7.80 6.42 10.11 8.72 
QUAD-3C 19.72 4.95 27.74 6.37 
QUAD-4A 7.14 6.10 10.88 9.88 
QUAD-4B 29.38 11.75 53.77 20.81 
QUAD-4C 6.59 5.32 6.43 9.01 

Average % 0 .00% +42.07% -29.49% +17.48% 
improvement 

right-hand-side coefficients, the average CPU time actually increased because of 
the greater processing time required per subproblem. 

Based on these test problems, we see that the generalized capacity improvement 
was most effective in reducing storage requirements (as measured by the number 
of subproblems evaluated) whereas the capacity improvement applied to only the 
lower and upper bounds was most effective in reducing the computational time. 

5. Summary and Further Work 

This paper has presented a generalization of the capacity improvement procedure 
by applying the domain reduction technique to the right-hand-side coefficients of 
the constraint set as well as to the simple lower and upper variable bounds. When 
applied to a set of fixed-charge and concave quadratic test problems, the generalized 
capacity improvement procedure dramatically reduced the number of subproblems 
that had to be evaluated in a branch-and-bound algorithm. The generalized capacity 
improvement procedure also reduced the average amount of CPU time required 
to solve the test problems. However, an even greater reduction in CPU time was 
achieved by applying the capacity improvement procedure only to the lower and 
upper bounds. This was because when the lower and upper bounds for a subproblem 
were improved, a correspondingly tighter lower envelope to the objective function 
of the subproblem was obtained. This tighter lower envelope, in turn, produced a 
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tighter relaxation to the subproblems, thus enabling the subproblems to be fathomed 
more efficiently in the branch-and-bound procedure. 

Our future work will focus on two areas. First, penalty methods, which have 
been used with integer programming branch-and-bound algorithms, can also be 
applied to concave minimization problems [3]. 'Up and down' penalties have been 
combined with capacity improvement [16] and we are currently looking at methods 
for combining capacity improvement with other types of penalties. Second, we 
have also been exploring the use of nonlinear lower envelopes to produce tighter 
relaxations to subproblems in the branch-and-bound procedure [1 ]. The nonlinear 
envelopes can be combined with penalties and capacity improvement procedures 
to further increase the efficiency of a branch-and-bound algorithm used to solve 
nonconvex optimization problems. 
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Appendix 

This appendix describes how the rate of increase ai (used in (6) in Section 3.1) can 
be obtained. A similar approach can be used to determine the value of ~i, 7k,  and 
5k (used in eqs. (10), (14), and (18), respectively). As in Section 3, we assume that 
we are focusing on the rth iteration of subproblem Q. Thus, in this appendix, we 
omit the subscript 'Q' and the superscript ' r ' .  

We assume that the solution to problem Q is available for the rth iteration. 
To describe this solution, we let J = {1 ,2 , . . . ,  n} and we partition J into J = 
jB  t3 jL  t3 j u  corresponding to the basic, nonbasic (at lower bound), and nonbasic 
(at upper bound) variables. We also partition x_ = (x_ B, _x L, x U ), _c = (_.c B , _.c L , _c U), 
and A = (B, AL, AU). We assume that __B is invertible. Let z denote the basic 
variable associated with the objective function and let f be a scalar constant such 
that r = f + cx. Using this notation, the initial simplex tableau for problem 
is given by 

- z  Xc_B ~ x L x U RHf  
1 c L c U 
0 A L A U _ 

(20) 
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Letting ~___L = B _ I A L  ' -~u = B _ I A U ,  ~_ = B _ l b  ' ~L  = c_L _ cB"~ L, -6U =. 

cV _ cB ~ U, and -~ = - f - c_B-b, the final simplex tableau for problem Q is given 
by 

- z  x B x L x U RHS 

1 0 __L __v I ~ (21) 
Q r ]L ]tr 

where / is the identity matrix. Now let d~ in constraint (4) be partitioned into 
di (d .B d b dU), and let si denote the slack variable associated with constraint 
(4). In addition, let ~_L = _d L _ d B x L ,  ~ U  = dU _ d__~ff-~u, and -0 = 0 - d_ff-6. 
Then, the current simplex tableau for the augmented problem Q I dix < 0 is given 
by 

--Z ~B  x__L X U 8i RHS 
1 O_ ~L __u 0 
0 _/ ~L  ~U 0 ~ (22) 

0 o l 

If 0 < bi + xk(i), then tableau (22) is dual feasible but not primal feasible and we 
set oei equal to the rate of increase of the objective function following one iteration 
of the dual simplex algorithm. 

To compute the value of o~i, we consider three cases. First, if k(i) E j L ,  then 

~-i = (Q, _L, ~u) = e-k(i)' (where e_k(i) E R n is a unit row vector). Since k(i) E j L ,  
this means that the dual is unbounded, the primal is infeasible, and o~i = +oo. 
Second, if k(i) E j u ,  then once again ~-i = e--k(i)" But now, since k(i) E j u ,  this 
means that xk(~) is the unique variable to enter the basis. So, o~i = -~k(i) (where 
-~k(i) is the k(i)th element of the reduced cost vector g = (0, L ,  gU) in tableau 
(21)). Finally, if k(i) E j B ,  then -di = a--i (where -_a i is the ith row of the reduced 
constraint matrix A = (_/,_L, _U)  in tableau (21)). In this case we define ,~L and 
~/u as 

,x/L = min { - ~ j  
J6JL "aij 

jEJ  U 

1 
: aij < 0 ~ ,  (23) 

: ~ij > 0 / �9 (24) 

Then the variable entering the basis will be the nonbasic variable associated with 
the minimum value of A L and A v. 

In summary, the value of~i used in (6) in Section 3.1 is computed as follows: 

{ min{,\L,,\ U} if k(i) E j B  

c~i = +c~ if k(i) E j L  (25) 

--Ok(i) if k(i) E j u  
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