
Journal of Global Optimization 7: 127-142, 1995. 127
�9 1995 Kluwer Academic Publishers. Printed in the Netherlands.

Nonconvex Optimization over a Polytope
Using Generalized Capacity Improvement

B. W. LAMAR
Department of Management, University of Canterbury, Christchurch, New Zealand

(Received: 1 April 1995; accepted: 1 June 1995)

Abstract. Capacity improvement involves the reduction of the size of the feasible region of an
optimization problem without 'cutting-off' the optimal solution point(s). Capacity improvement
can be used in a branch-and-bound procedure to produce tighter relaxations to subproblems in the
enumeration tree. Previous capacity improvement work has concentrated on tightening the simple
lower and upper bounds on variables. In this paper, the capacity improvement procedure is generalized
to apply to all constraints that form the feasible region. For the minimization of a separable concave
function over a bounded polytope, the method of calculating the capacity improvement parameters
is very straightforward. Computational results for fixed-charge and quadratic concave minimization
problems demonstrate the effectiveness of this procedure.

Key words: Capacity improvement, domain reduction, nonconvex optimization, branch-and-bound.

1. Introduction

Capacity improvement can be classified as a 'domain reduction' technique. Domain
reduction involves the 'shrinking' of the feasible region of an optimization prob-
lem while, at the same time, ensuring that the tighter region thus produced still
contains the optimal solution point(s) to the original problem. Techniques such
as variable 'pegging' [14] for fixed-charge problems or Tuy [26] cuts for general
concave minimization problems can be classified as domain reduction techniques.
A distinguishing feature of capacity improvement, however, is that it does not
add additional constraints to the problem. Instead, it tightens the feasible region
by systematically altering the right-hand-side coefficients of the constraints of the
problem. In this way, tighter relaxations to the original problem can be produced
without increasing the complexity of these relaxations. Additional domain reduc-
tion techniques are discussed in [2, 4, 5, 6, 10, 11, 15, 16, 18, 23, 24, 25].

To illustrate the effect of the generalized capacity improvement procedure pre-
sented in this paper, consider problem P , the minimization of a separable concave
function over a bounded polytope. Problem P is specified as

P r o b l e m P " min~b(z) s.t. z E X = G f q H ,

where z_ = (. . . , z j , . . .) ' r E R n is the decision variable vector; G = {_z" A z = __b}
is a polytope with A E R ~• and_b = (. . . , hi , . . .)T E Rm; H = {z_: I < z < u_u_}
is a hyper-rectangle with / = (. . . , l j , . . .) T E R n and u_u_ = (. . . , u j , . . .) ' r E Rn;

128 B.w. LAM~

and r = ~r~=l(~j(xj) i s the objective function with each Cj(xj) a concave
function over lj < xj < uj. Let x* = (. . . ,x~, . . .)T E R '~ denote an optimal
solution vector of problem P. Also, throughout this paper, for any problem., let
v[e] denote the optimal objective function value o f . , let lb[e] be a lower bound to
v[.], and let ub[.] be an up.per bound to v[.]. Thus, v[P] = r

Now consider the set X c_ R '~. If x_.* E X, then X is termed a 'valid' region
for problem P. If, in addition to being valid, we have X C X, then .~ is called
an 'improved' region for problem P. Domain reduction techniques, such as capac-
ity improvement, produce improved feasible regions. Previous work on capacity
improvement has focused on generating ~ improved region .~ by producing
improved lower and upper variable bounds, _/and _~. This is the approach taken in
[15, 16, 18, 23, 25]. In this paper, we extend the ability of the capacity improvement
procedure to generate an improved region X by producing improved bounds/_ and
_~ as well as an improved right-hand-side coefficient vector _b. This extension to the
capacity improvement procedure is referred to as 'generalized capacity improve-
ment'. Generalized capacity improvement was first explored in [17]. It has also
been used successfully in [24].

Most methods for solving problem P involve extreme point ranking, cutting
plane, or branch-and-bound techniques. These methods are surveyed in [9, 12, 13,
19, 20, 21, 22]. In the branch-and-bound method, the rectangle H is partitioned
into successively smaller rectangles producing a series of subproblems of problem
P. Let Q be a generic subproblem of P and let XQ denote the feasible region of
Q. Domain reduction techniques, such as generalized capacity improvement, can
be applied to each subproblem Q to produce an improved region XQ. Note that
since XQ C XQ, a relaxation based on)~Q will, in general, produce a lower bound
to v[Q] that is tighter than one based on XQ,. This tighter lower bound to v[Q],
in turn, facilitates the fathoming of subproblem Q. Branch-and-bound algorithms
that incorporate domain reduction have been aptly labeled by Ryoo and Sahinidis
[23] as 'branch-and-reduce' methods.

This paper is organized as follows. Section 2 outlines a branch-and-bound algo-
rithm that uses generalized capacity improvement for domain reduction of the sub-
problems. Section 3 describes a straightforward method of computing the param-
eters used in the generalized capacity improvement procedure. Section 4 reports
on the computational performance of this technique for a class of fixed-charge and
quadratic concave minimization problems. Finally, Section 5 summarizes the paper
and discusses future work in this area.

2. Solution Method

This section is divided into two parts. The first part summarizes the tradition-
al branch-and-bound method for solving problem P using rectangular partition-
ing (see, for example, [22]). This part also introduces notation. The second part

GENERALIZED CAPACITY IMPROVEMENT 129

describes how generalized capacity improvement can be incorporated within the
traditional branch-and-bound algorithm.

2.1. BRANCH-AND-BOUND PROCEDURE

Rather than solving P directly, the branch-and-bound procedure partitions the
rectangle H into smaller rectangles. This creates a series of 'subproblems' (i.e.,
'descendants') of problem P. Let problem Q denote the subproblem of P currently
under consideration. Specifically,

Problem Q : min r s.t. x E X Q = GQ fq HQ,

where GQ = {x_ : Ax_ = b Q} and HQ = {_x : /Q < x < U_Q} with bQ ----
(... ,bQi,...)T E Rm, l_Q = (... ,IQj,...)T E Rn andU_Q = (. . . ,UQj,...)T E R n
such that GQ C_ G and HQ C_ H. In the traditional branch-and-bound procedure
using rectangular partitioning, _bQ ---~ b. Later, when capacity improvement is dis-
cussed, _bQ will be distinct from _b.

Problem Q (and its descendants) can be eliminated from further consideration
if the following fathoming criterion, denoted criterion (F), is satisfied:

(F) Ib[Q] >_ ub[P]

Typically, the value of ub[P] is taken as the objective function value of the current
'incumbent' solution of P (i.e., best feasible solution to P found so far); and the
value of lb[Q] is obtained by solving a 'relaxation' of Q.

In general, a relaxation of Q can be any problem such that the following two
properties, denoted (R1) and (R2), are satisfied [7]:

(R1) The feasible region of the relaxation contains or equals XQ;

(R2) The objective function value of the relaxation at each point x E XQ is less
than or equal to r

For our purposes, it is important to distinguish between properties (R1) and (R2).
Therefore, we define a 'feasibility relaxation' of Q as any problem whose feasible
region satisfies property (R1) but whose objective function equals r for all
x E XQ. Similarly, we define an 'objective value relaxation' of Q as any problem
whose objective function satisfies property (R2) but whose feasible region equals
XQ.

Let Q be an objective value relaxation of Q. Specifically,

Problem Q : rain Co(X) s.t. x_. E XQ = G o N HQ,

whereeQ(x) = '~ - ~j=l eQj (x j) is the convex (in our case, affine) lower envelope
of r on HQ. Because XQ is a polytope and Co(X) is affine, problem Q is a

13 0 B.W. LAMAR

linear program which can be solved very efficiently. Since Q is a relaxation of Q,
we define v[Q] as the 'relaxation lower bound' to v[Q].

If the fathoming criterion (F) is satisfied using the relaxation lower bound, then
no further evaluation of problem Q is required and another subproblem of P can
be selected and evaluated as the current subproblem. On the other hand, if criterion
(F) is not satisfied, then one of the following two 'branching' actions, denoted (B1)
and (B2), must be taken by the branch-and-bound procedure:

(B1) 'Persist' at the current subproblem by evaluating a tighter relaxation of Q;

(B2) 'Separate' the current subproblem by partitioning the rectangle HQ into
two smaller rectangles thereby replacing Q with two new subproblems of
P.

Following action (B1), the branch-and-bound procedure will again attempt to fath-
om problem Q using a tighter value of/b[Q] whereas following action (B2), a new
subproblem will be selected and the branch-and-bound procedure will attempt to
fathom the new subproblem. In either case, the branch-and-bound procedure will
continue until all subproblems have been fathomed using criterion (F). Once all
the subproblems of P have been fathomed, the branch-and-bound procedure ter-
minates and the current incumbent solution to P is identified as an optimal solution
toP .

2.2. GENERALIZED CAPACITY IMPROVEMENT

Generalized capacity improvement is one method of taking action (B1) (i.e., 'per-
sisting' at the current subproblem, Q). In order to explain the concept, we define
another problem, denoted Q*, whose feasible region, denoted X~, is the (possibly
empty) subset of X o in which the value of r less than or equal to ub[P] (the
current upper bound to v [P]). Specifically,

Problem Q* : min r s.t. _x E X~ = GQ M HQ M {x__: r _< ub[P]}.

Thakur [25] refers to problem Q* as a 'contraction' of problem Q. Note that if
ub[P] > v[Q], then v[Q*] = v[Q]. On the other hand, if ub[P] < v[Q], then Q* is
infeasible so X~ is empty and v[Q*] = +c~.

In addition, let Qr for r ---- 0, 1 ,2 , . . . , be a family of successively tighter
feasibility relaxations of Q*. Specifically,

ProblemQr: mine(x) s.t. x E X ~ = G 0 N H ~ ,

where G 0 = {_x : Ax = b__~} and H~ = {x : _/~ < x < uS} with ~ =
(... b r ..)T R m 1 r)T R nand_~ r . . .) T E R n , , _ q e

such that for each r we have X~ _3 X~ +1 _3 X~. For r = O, we set G~ = GQ and
H~ = HQ so that Z ~ = XQ and problem Q0 is the same as problem Q. Note that
ifub[P] > v[Q], then for each r we have v[Q r] = v[Q r+l] = v[Q*] = v[Q].

GENERALIZED CAPACITY IMPROVEMENT 131

Next, we define problem Q~ to be an objective value relaxation of problem Qr.
Specifically,

Problem Q ~ : minr s.t. x E X ~ = G 0 N H ~ ,

where r (z__) = n -~ Ej= 1 q3oj (xj) is the convex (in our case, affine) lower envelope of

r on H~. Problem ~ r is a linear program which can be solved very efficiently.

Note that, because ~ r is a relaxation of Qr, we have v[Q ~] < v[Q~]. Furthermore,
ifub[P] > v[Q], then for each r, wehave v[Q r] = v[Q],sov[Q'] is a lower bound
to v[Q]. On the other hand, if ub[p] < v[Q], then ub[P] is itself a lower bound to
v[Q]. This means that either v[Q ~] or ub[P] (or possibly both) is a lower bound to
v[Q].

Therefore, for each r, we let CI~ denote the 'capacity improvement lower
bound' to v [Q], where CI~ is defined as

CI~ = min {ub[P], v[Q~]}. (1)

The generalized capacity improvement procedure produces a sequence of non-
decreasing lower bounds each of which is as least as tight as the relaxation lower
bound v [Q]. If, for any given r, criterion (F) is satisfied using the capacity improve-
ment lower bound, then problem Q can be fathomed. Otherwise, either actions (B1)
or (B2) must be taken. If action (B1) is selected, then the branch-and-bound pro-
cedure will attempt to produce a tighter lower bound to v[Q] by solving problem

~ r + l and computing CI[~ +1. On the other hand, if action (B2) is chosen, then
rectangle H~ will be partitioned into two smaller rectangles.

The next section describes how CI~ is calculated by specifying the parameters

in problem Q .

3. Parameter Determination

Throughout this section we assume that we are focusing on the rth capacity
improvement iteration of subproblem Q . Therefore, we omit the subscript 'Q'
and the superscript ' r ' throughout this section. Also, when we are referring to the
(r + 1)-st capacity improvement iteration, we use the superscript' 1' rather than the
superscript ' r + 1' throughout this section. Thus, for instance, in the rth iteration,
(1) is given as

(5/1 = min {ub[P], v[Q]}

and, in the (r + 1)-st iteration, (1) is specified as

CI 1 = min {ub[P],v[Q1]}.

(2)

We assume that, in the rth iteration, the solution to the linear program Q is available.
The solution to problem Q (in the rth iteration) is used to determine the 'improved'

(3)

132 B.W. LAMAR

parameter vectors, __b 1 = (. . . , b~ , . . .)T E R m, /1 = (. . . , l j , . . .) T E R n and

_u 1 = (. . . , u J . . .) T E R n (in the (r + 1)-st iteration). Once the improved parameter

vectors have been determined, problem Q 1 can be solved and the value of v [Q 1]
can be determined. This value, in turn, is used to calculate CI 1 using (3). Thus,
using this 'boot-strap' method, the capacity improvement lower bound can be
computed for any iteration number, r.

This section is divided into four subsections. The first two subsections describe
the method for computing the improved right-hand-side vector bl; and, for com-
pleteness, the last two subsections review the method for computing the improved
lower and upper bound vectors,/1 and u__ 1.

3.1. GREATER-THAN-OR-EQUAL-TO CONSTRAINT

Let _a i E R n be a row vector denoting the ith row of constraint matrix A. Then, the
ith constraint of the polyhedral constraint set G of problem Q is given by aix = hi.
Suppose that this equality constraint was formed by introducing a surplus variable
to a greater-than-or-equal-to constraint. Let k(i) denote the index of the surplus
variable for the ith constraint and let _.Ca(i) E R n be a unit row vector (i.e., a vector
of zeros except for a 1 in the k(i)th position). Then, the ith constraint of problem

can also be expressed as (ai + _ek(i))x__ >_ hi.
Now consider the effect of adding the less-than-or-equal-to constraint

dix </9 (4)

to problem Q where _d i = a i -t-_ek(i) and 0 is a scalar parameter. Note that constraint

(4) is identical to the ith constraint of problem Q except for the right-hand-side
coefficient and the direction of the inequality. Let problem Q augmented with
constraint (4) be denoted by Q [_dix__ < 0 and let v [Q [di_x < 0] denote the optimal
objective function value of this augmented problem. Note that v [Q [_dix__ </9] is
a piecewise-linear, convex, nonincreasing function of/9 and that constraint (4) is
binding in the optimal solution to the augmented problem only if/9 < bi + ~k(i)
where Xa(i) is the optimal value of decision variable xk(i) in problem Q.

In addition, let ai denote the rate of increase in v [Q [_dix__ </9] for an incremental
decrease in/9 below bi + ~k(i). As shown in the Appendix, ai can be computed
directly from the solution to problem Q. By construction, ai >_ 0.

Next, let (9(/9) denote the line given by

(9(0) = v[Q] + ai(bi + -Zk(i)) -- aiO. (5)

Observe that 0(0) is a tangent line to the function v[Q [-dix-- < 0]. It has slope
-oq and passes through the point (hi + ~k(i), v[Q]). If oq is strictly greater than
zero, then we can solve explicitly for the value of 0 such that (9(0) equals the

GENERALIZED CAPACITY IMPROVEMENT 133

upper bound, ub[P]. Letting bi denote the value of 0 such that 0(0) = ub[P], we
obtain

ub[P] - v[Q] (6)
bi = bi + "Zk(i) -- a+

We now specify b~, the improved right-hand-side coefficient for the (greater-than-
or-equal-to) constraint i, as

b~ = (bibi otherwiseif ai > 0 and bi > bi (7)

3.2. LESS-THAN-OR-EQUAL-TO CONSTRAINT

Now suppose that the ith constraint of Q was formed by adding a slack variable to a
less-than-or-equal-to constraint. A procedure analogous to that given in Section 3.1
can be performed to determine the improved right-hand-side coefficient, b~. Let
k(i) denote the index of the slack variable for the ith constraint. Then, the ith
constraint of problem Q can be expressed as (_a i - ek(i))z_ _< bi.

We now form the augmented problem by adding the greater-than-or-equal-to
constraint

~+_x _> 0 (8)

to problem Q where -di = -ai - -ek(i) and 0 is a scalar parameter. Let problem

augmented with constraint (8) be denoted by Q [_dix_ _> 0 and let v[Q [~ix_ _> 0]
denote the optimal objective function value of this augmented problem. For this
case, note that v[Q [_di_x _> 0] is a piecewise-linear, convex, nondecreasing function
of 0 and that constraint (8) is binding only if 0 _> b+ - ~k(i).

Let/3/denote the rate of increase in v[Q [_di_x _> 0] for an incremental increase
in 0 above bi - ~k(i). By construction,/3i _> 0. Now let 0(0) denote the tangent
line given by

0(0) = v[O] -]3i(bi - Zk(i)) + fliO. (9)

If/3i > O, then we can solve explicitly for the value of 0 such that 0(0) = ub[P].
Letting bi denote this value, we obtain

bi = bi - Zk(i) + ub[P] - v[Q] (10)

Then, the value of b+, the improved right-hand-side coefficient for the (less-than-
or-equal-to) constraint i, is given by

b~ = { bi if/3/ > 0 and bi < bi
bi otherwise (11)

134 B.w. LAMAR

3.3. LOWER BOUND

Let k be the index of one of the decision variables in problem Q, let _e k E R n be
a unit vector, and let 0 be a scalar. Consider the augmented problem formed by
adding the constraint

_ek_z _< 0 (12)

to problem Q. Let 7k denote the rate of increase in v[Q [_ek_z _< 0] for an incremental
decrease in 0 below ~k. By construction, 7k > 0. Let 0(0) denote the tangent line
given by

0(0) = v[Q] + 7k~k -- 7k0. (13)

Letting [k denote the value of 0 such that 0(0) = ub[P] for "Tk > 0, we obtain

lk = -2k - ub[P] - v[Q] (14)
7k

and the value of l~, the improved lower bound for variable xk, is given by

ll = { lklk otherwiseif 7k > 0 and k > Ik (15)

3.4. UPPER BOUND

Now consider the augmented problem formed by adding the greater-than-or-equal-
to constraint

_.ek_z > 0 (16)

to problem Q and let 6k denote the rate of increase in v[Q [_.ekz_. > 0] for an
incremental increase in 0 above ~k. By construction, 6k > 0. Let 0(0) denote the
tangent line given by

0(0) = v[Q] - 6 k ~ k + 6leo (17)

Letting 72k denote the value of 0 such that 0(0) = ub[P] for 6k > 0, we obtain

ub[P] - v[Q]
~2k = ~k + (18) 6k

and the value of u~, the improved upper bound for variable xk, is given by

u l = ~2k i f 6 k > 0 a n d ~ 2 k < u k
(19)

(uk otherwise

GENERALIZED CAPACITY IMPROVEMENT 13 5

The next section examines the computational effectiveness of the generalized
capacity improvement procedure.

4. Computational Performance

The solution method described in Sections 2 and 3 was applied to two types of
nonconvex minimization problems. First, Gray's [8] fixed-charge test problems
were solved. These test problems are referred to as problems FIXED-1A through
FIXED-4C. Second, these same test problems were solved using a separable con-
cave quadratic objective function in place of the fixed-charge objective function.
The quadratic functions were generated using coefficients that were randomly cho-
sen from a uniform distribution. The coefficient for the squared term in the objective
function was forced to be negative to ensure that the functions were concave. The
quadratic test problems are referred to as problems QUAD-1A through QUAD-4C.
The characteristics of the 12 fixed-charage and the 12 quadratic test problems are
summarized in Table I.

TABLE I. Characteristics of test problems

Type of Number of
Problem objective Number of decision

name function constraints variables

FIXED- 1A, 1B, 1C Fixed-charge 10 9
FIXED-2A,2B,2C Fixed-charge 18 15
FIXED-3A,3B,3C Fixed-charge 30 19
FIXED-4A,4B,4C Fixed-charge 28 30
QUAD-1A,1B,1C Concave quadratic 10 9
QUAD-2A,2B,2C Concave quadratic 18 15
QUAD-3A,3B,3C Concave quadratic 30 19
QUAD-4A,4B,4C Concave quadratic 28 30

Each of the 24 test problems was solved four times: first, using the traditional
branch-and-bound approach without capacity improvement (see Section 2.1); sec-
ond, using capacity improvement only for the lower and upper bound vectors (_/~
and ~_~); third, using capacity improvement only for the right-hand-side coeffi-
cient vector (_.b~); and fourth, using capacity improvement for the upper and lower
bounds as well as the right-hand-side coefficients (_/~, _~, and b_~). The solution
methods were programmed in Fortran using the Lindo callable library to solve the
objective value relaxations (~ r) for the subproblems. The problems were solved
on a Micro-Source International microcomputer (comparable to an IBM-AT). For
each problem and each solution method, the number of subproblems evaluated in
the branch-and-bound enumeration tree and the total CPU time (in seconds) were
recorded.

136 13. w. LAMAR

The results are shown in Tables II through V. Tables II and]1I give the num-
ber of subproblems solved for the fixed-charge and the concave quadratic test
problems, respectively. Here, we see that the capacity improvement procedure had
a pronounced effect. Compared to the traditional branch-and-bound method, the
generalized capacity improvement procedure reduced the number of subproblems
evaluated by over 50% for the fixed-charge problems, and by over 80% for the
concave quadratic problems. In fact, when capacity improvement was applied to
the quadratic problems, two-thirds of the test problems required only a single
subproblem, indicating that these problems were solved at the 'root node' in the
branch-and-bound enumeration tree. Tables II and III also show that a substantial
proportion of the benefit of capacity improvement was due to the improvements of
the lower and upper bounds rather than due to improvements in the right-hand-side
coefficients.

TABLE II. Subproblems evaluated: Fixed-charge test problems

Branch-and-bound solution method
Problem C.I. for C.I. for C.I. for

n a m e Traditional ~ , u S b~ ~ , _~, b~

FIXED- 1A 65 31 49 29
FIXED- 1B 47 25 29 13
FIXED- 1C 129 87 95 47
FIXED-2A 299 173 297 141
FIXED-2B 243 179 203 121
FIXED-2C 2479 1447 2213 1303
FIXED-3A 1113 673 955 645
FIXED-3B 887 401 801 389
FIXED-3C 627 293 591 259
FIXED-4A 2089 1061 1747 807
FIXED-4B 1169 685 2135 1325
FIXED-4C 4471 2303 2561 1251

Average % 0.00% +44.04% + 10.27% +51.56%
improvement

The achievements of the generalized capacity improvement to reduce the num-
ber of subproblems evaluated is tempered somewhat by the results relating to
CPU time. This information is shown in Tables IV and V for the fixed-charge
and quadratic test problems, respectively. We see that, on average, the generalized
capacity improvement reduced the CPU time by about 2% for the fixed-charge
problems and by over 17% for the quadratic problems. However, an even greater
benefit was achieved when the capacity improvement was applied only to the lower
and upper bounds. Here, the capacity improvement procedure reduced the CPU
time by over 20% for the fixed-charge problems and by over 40% for the quadrat-
ic problems. In contrast, when the capacity improvement was used for only the

GENERALIZED CAPACITY IMPROVEMENT 137

TABLE Ill. Subproblems evaluated: Concave quadratic test problems

Branch-and-bound solution method
Problem C.I. for C.I. for C.I. for

name Traditional ~ , ~ b~ /_~, _~, _b~

QUAD-1A 5 1 5 1
QUAD-1B 13 5 13 5
QUAD- 1C 7 1 7 1
QUAD-2A 21 5 15 5
QUAD-2B 15 1 15 1
QUAD-2C 7 1 7 1
QUAD-3A 23 3 19 3
QUAD-3B 9 1 9 1
QUAD-3C 33 1 33 1
QUAD-4A 5 1 5 1
QUAD-4B 27 5 27 5
QUAD-4C 5 1 3 1

Average % 0.00% .1 .83 .07% .1 .7 .16% -I-83.07%
improvement

TABLE IV. CPU Time: Fixed-charge test problems

Branch-and-bound solution method
Problem C.I. for C.I. for C.I. for

name Traditional ~ , _u S b~ ~ , _~, b~

FIXED- 1A 20.76 13.07 19.83 14.17
FIXED-1B 16.42 12.75 12.58 8.35
FIXED- 1C 43.61 39.60 43.28 30.37
FIXED-2A 162.14 125.39 218.80 146.98
FIXED-2B 130.94 115.29 154.46 117.48
FIXED-2C 1388.18 1110.53 1749.98 1381.71
FIXED-3A 785.44 755.50 916.98 958.89
FIXED-3B 629.83 466.98 768.29 592.87
FIXED-3C 415.45 307.42 544.80 387.83
FIXED-4A 2270.73 1512.76 3371.49 1984.02
FIXED-4B 1259.66 992.12 4128.75 3072.53
FIXED-4C 4933.24 3603.12 5348.26 3292.89

Average % 0.00% -I-21.70% -33.74% .1.1.98%
improvement

138

TABLE V. CPU time: Concave quadratic test problems

B. W. LAMAR

Branch-and-bound solution method
Problem C.I. for C.I. for C.I. for

name Traditional ~ , _u~ b~ _/~, .~ , b~

QUAD-1A 1.82 1.26 2.26 1.54
QUAD- 1B 4.23 3.52 5.05 4.45
QUAD- IC 2.03 0.77 2.42 0.88
QUAD-2A 11.04 7.47 11.10 10.87
QUAD-2B 7.09 2.14 9.83 2.91
QUAD-2C 3.73 1.70 4.95 2.09
QUAD-3A 15.16 7.25 17.57 10.72
QUAD-3B 7.80 6.42 10.11 8.72
QUAD-3C 19.72 4.95 27.74 6.37
QUAD-4A 7.14 6.10 10.88 9.88
QUAD-4B 29.38 11.75 53.77 20.81
QUAD-4C 6.59 5.32 6.43 9.01

Average % 0 .00% +42.07% -29.49% +17.48%
improvement

right-hand-side coefficients, the average CPU time actually increased because of
the greater processing time required per subproblem.

Based on these test problems, we see that the generalized capacity improvement
was most effective in reducing storage requirements (as measured by the number
of subproblems evaluated) whereas the capacity improvement applied to only the
lower and upper bounds was most effective in reducing the computational time.

5. Summary and Further Work

This paper has presented a generalization of the capacity improvement procedure
by applying the domain reduction technique to the right-hand-side coefficients of
the constraint set as well as to the simple lower and upper variable bounds. When
applied to a set of fixed-charge and concave quadratic test problems, the generalized
capacity improvement procedure dramatically reduced the number of subproblems
that had to be evaluated in a branch-and-bound algorithm. The generalized capacity
improvement procedure also reduced the average amount of CPU time required
to solve the test problems. However, an even greater reduction in CPU time was
achieved by applying the capacity improvement procedure only to the lower and
upper bounds. This was because when the lower and upper bounds for a subproblem
were improved, a correspondingly tighter lower envelope to the objective function
of the subproblem was obtained. This tighter lower envelope, in turn, produced a

GENERALIZED CAPACITY IMPROVEMENT 139

tighter relaxation to the subproblems, thus enabling the subproblems to be fathomed
more efficiently in the branch-and-bound procedure.

Our future work will focus on two areas. First, penalty methods, which have
been used with integer programming branch-and-bound algorithms, can also be
applied to concave minimization problems [3]. 'Up and down' penalties have been
combined with capacity improvement [16] and we are currently looking at methods
for combining capacity improvement with other types of penalties. Second, we
have also been exploring the use of nonlinear lower envelopes to produce tighter
relaxations to subproblems in the branch-and-bound procedure [1]. The nonlinear
envelopes can be combined with penalties and capacity improvement procedures
to further increase the efficiency of a branch-and-bound algorithm used to solve
nonconvex optimization problems.

Acknowledgements

This work was supported, in part, by research grants from the Energy Modelling
Research Group, University of Canterbury, Christchurch, New Zealand and from
the Institute of Transportation Studies, University of California, Irvine. Their sup-
port is gratefully acknowledged. I also wish to thank Gavin Bell, Mary Anne Lamar,
and the referees for their thoughtful reading of the manuscript.

Appendix

This appendix describes how the rate of increase ai (used in (6) in Section 3.1) can
be obtained. A similar approach can be used to determine the value of ~i, 7k, and
5k (used in eqs. (10), (14), and (18), respectively). As in Section 3, we assume that
we are focusing on the rth iteration of subproblem Q. Thus, in this appendix, we
omit the subscript 'Q' and the superscript ' r ' .

We assume that the solution to problem Q is available for the rth iteration.
To describe this solution, we let J = {1 ,2 , . . . , n} and we partition J into J =
jB t3 jL t3 j u corresponding to the basic, nonbasic (at lower bound), and nonbasic
(at upper bound) variables. We also partition x_ = (x_ B, _x L, x U), _c = (_.c B , _.c L , _c U),
and A = (B, AL, AU). We assume that __B is invertible. Let z denote the basic
variable associated with the objective function and let f be a scalar constant such
that r = f + cx. Using this notation, the initial simplex tableau for problem
is given by

- z Xc_B ~ x L x U RHf
1 c L c U
0 A L A U _

(20)

140 B. Wo LAMAR

Letting ~___L = B _ I A L ' -~u = B _ I A U , ~_ = B _ l b ' ~L = c_L _ cB"~ L, -6U =.

cV _ cB ~ U, and -~ = - f - c_B-b, the final simplex tableau for problem Q is given
by

- z x B x L x U RHS

1 0 __L __v I ~ (21)
Q r]L]tr

where / is the identity matrix. Now let d~ in constraint (4) be partitioned into
di (d .B d b dU), and let si denote the slack variable associated with constraint
(4). In addition, let ~_L = _d L _ d B x L , ~ U = dU _ d__~ff-~u, and -0 = 0 - d_ff-6.
Then, the current simplex tableau for the augmented problem Q I dix < 0 is given
by

--Z ~B x__L X U 8i RHS
1 O_ ~L __u 0
0 _/ ~L ~U 0 ~ (22)

0 o l

If 0 < bi + xk(i), then tableau (22) is dual feasible but not primal feasible and we
set oei equal to the rate of increase of the objective function following one iteration
of the dual simplex algorithm.

To compute the value of o~i, we consider three cases. First, if k(i) E j L , then

~-i = (Q, _L, ~u) = e-k(i)' (where e_k(i) E R n is a unit row vector). Since k(i) E j L ,
this means that the dual is unbounded, the primal is infeasible, and o~i = +oo.
Second, if k(i) E j u , then once again ~-i = e--k(i)" But now, since k(i) E j u , this
means that xk(~) is the unique variable to enter the basis. So, o~i = -~k(i) (where
-~k(i) is the k(i)th element of the reduced cost vector g = (0, L , gU) in tableau
(21)). Finally, if k(i) E j B , then -di = a--i (where -_a i is the ith row of the reduced
constraint matrix A = (_/,_L, _U) in tableau (21)). In this case we define ,~L and
~/u as

,x/L = min { - ~ j
J6JL "aij

jEJ U

1
: aij < 0 ~ , (23)

: ~ij > 0 / �9 (24)

Then the variable entering the basis will be the nonbasic variable associated with
the minimum value of A L and A v.

In summary, the value of~i used in (6) in Section 3.1 is computed as follows:

{ min{,\L,,\ U} if k(i) E j B

c~i = +c~ if k(i) E j L (25)

--Ok(i) if k(i) E j u

GENERALIZED CAPACITY IMPROVEMENT 141

References

1. G. J. Bell, B. W. Lamar, and C. A. Wallace (1995), Capacity Improvement, Penalties, and
the Fixed Charge Transportation Problem, Working Paper, Energy Modelling Research Group,
Department of Management, University of Canterbury, Christchurch, New Zealand.

2. H. P. Benson (1985), A Finite Algorithm for Concave Minimization over a Polyhedron, Naval
Research Logistics Quarterly 32, 165-177.

3. K. M. Bretthauser (1994), A Penalty for Concave Minimization Derived from the Tuy Cutting
Plane, Naval Research Logistics 41, 455--463.

4. K. M. Bretthauser, and A. V. Cabot (1994), A Composite Branch and Bound, Cutting Plane
Algorithm for Concave Minimization over a Polytope, Computers and Operations Research 21,
777-785.

5. A. V. Cabot (1974), Variations on a Cutting Plane Method for Solving Concave Minimization
Problems with Linear Constraints, Naval Research Logistics Quarterly 21, 264-274.

6. J. E. Falk, and K. L. Hoffman (1986), Concave Minimization via Collapsing Polytopes, Opera-
tions Research 34, 919-929.

7. A. M. Geoffrion, and R. E. Marsten (1972), Integer Programming Algorithms: A Framework
and State-of-the-Art Survey, Management Science 18, 465-491.

8. P. Gray (1967), Mixed Integer Programming Algorithm for Site Selection and Other Fixed Charge
Problems, Technical Report No. 6, Department of Operations Research, Stanford University,
Stanford, CA.

9. C. D. Heising-Goodman (1981), A Survey of Methodology for the Global Minimization of
Concave Functions Subject to Convex Constraints, OMEGA 9, 313-319.

10. K. L. Hoffman (1981), A Method for Globally Minimizing Concave Functions Over Convex
Sets, Mathematical Programming 20, 22-32.

11. K. L. Hoffman, and M. Padberg (1985), LP-Based Combinatorial Problem Solving, Annals of
Operations Research 4, 145-194.

12. R. Horst (1986), A General Class of Branch-and-Bound Methods in Global Optimization with
Some New Approaches for Concave Minimization, Journal of Optimization Theory and Appli-
cations 51, 271-291.

13. R. Horst, and H. Tuy (1993), Global Optimization: Deterministic Approaches, 2nd ed. Springer-
Verlag, Berlin.

14. B.M. Khumawala (1972), An Efficient Branch and Bound Algorithm for the Warehouse Location
Problem, Management Science 18, 718-731.

15. B. W. Lamar (1985), Network Design Algorithms with Applications to Freight Transportation,
Ph.D. Dissertation, Department of Civil Engineering, Massachusetts Institute of Technology,
Cambridge, MA.

16. B. W. Lamar (1993), An Improved Branch and Bound Algorithm for Minimum Concave Cost
Network Flow Problems, Journal of Global Optimization 3, 261-287.

17. B. W. Lamar (1993), Nonconvex Optimization Over a Polytope Using Generalized Capacity
Improvement, presented at the ORSA/TIMS Joint National Meeting, Phoenix, AZ, November.

18. B. W. Lamar, Y. Sheffi, and W. B. Powell (1990), A Capacity Improvement Lower Bound for
Fixed Charge Network Design Problems, Operations Research 38, 704-710.

19. G. P. McCormick (1972), Attempts to Calculate Global Solution of Problems that May Have
Local Minima, in F. A. Lootsma (Ed.), Numerical Methods for Nonlinear Optimization, 201-221,
Academic Press, New York.

20. P. M. Pardalos (1994), On the Passage from Local to Global in Optimization, in J. R. Birge and
K. G. Murty (Eds.), Mathematical Programming: State of the Art 1994, 220-247, The University
of Michigan Press, Ann Arbor, MI.

21. P. M. Pardalos, and J. B. Rosen (1986), Methods for Global Concave Minimization: A Biblio-
graphic Survey, SIAM Review 28, 367-379.

22. P. M. Pardalos, and J. B. Rosen (1987), Constrained Global Optimization: Algorithms and
Applications, Lecture Notes in Computer Science 268, Springer-Verlag, Berlin.

23. H. S. Ryoo, and N. V. Sahinidis (1993), Global Optimization of Nonconvex NLPs and MINLPs
with Applications in Process Design, Technical Report UILU-ENG 93-4023, Department of

142 B.w. LAMAR

Mechanical and Industrial Engineering, University of Illinois at Urbana-Champalgn, Urbana, IL,
November.

24. J.P. Shectman, and N. V. Sahinidis (1995), A Finite Algorithm for Global Minimization of Sepa-
rable Concave Programs, Working Paper, Department of Mechanical and Industrial Engineering,
University of Illinois at Urbana-Champalgn, Urbana, IL, January.

25. N. V. Thakur (1990), Domain Contraction in Nonlinear Programming: Minimizing a Quadratic
Concave Function over a Polyhedron, Mathematics of Operations Research 16, 390-407.

26. H. Tuy (1964), Concave Programming under Linear Constraints, Soviet Mathematics 5, 1437-
1440.

